Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10339, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365218

RESUMO

Insects play a critical role in providing numerous ecosystem services. However, insect diversity and biomass have been declining dramatically, with artificial light being suggested as a contributing factor. Despite the importance of understanding the dose-effect responses of insects to light emissions, these responses have been rarely studied. We examined the dose-effect responses of the greater wax moth (Galleria mellonella L.) to different light intensities (14 treatments and a dark control) by observing their behavioural responses in a light-tight box equipped with a LED light source (4070 K) and infrared cameras. Our findings reveal dose-effect responses to light, as the frequency of walking on the light source increased with higher light intensity. Additionally, moths exhibited jumps in front of the light source and jump frequency increased with light intensity. No direct flight-to-light behaviour or activity suppression in response to light was observed. Based on our analysis of the dose-effect responses, we identified a threshold value of 60 cd/m2 for attraction (walking on the light source) and the frequency of jumps. The experimental design in this study offers a valuable tool for investigating dose-effect relationships and behavioural responses of various species to different light levels or specific light sources.


Assuntos
Mariposas , Animais , Ecossistema , Luz , Larva
2.
Oecologia ; 180(4): 1175-82, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26714828

RESUMO

Plant patch structure and environmental context can influence the outcome of antagonistic and mutualistic plant-insect interactions, leading to spatially variable fitness effects for plants. We investigated the effects of herbivory and pollen limitation on plant reproductive performance in 28 patches of the self-compatible perennial herb Scrophularia nodosa and assessed how such effects varied with plant patch size, plant density and tree cover. Both antagonistic and mutualistic interactions had strong effects on plant reproductive performance. Leaf feeding from herbivores reduced both fruit production and seed germination, and leaf herbivory increased with plant patch size. Experimentally hand-pollinated flowers produced more seeds than open-pollinated flowers, and pollen limitation was more severe in patches with fewer plants. Our study on S. nodosa is one of few which documents that plant patch structure influences the outcome of both antagonistic and mutualistic plant-insect interactions. The results thus provide an example of how variation in plant patch structure and environmental factors can lead to spatially variable fitness effects from mutualistic and antagonistic interactions.


Assuntos
Ecossistema , Herbivoria , Pólen , Polinização , Scrophularia/fisiologia , Sementes/crescimento & desenvolvimento , Simbiose , Animais , Flores , Frutas/crescimento & desenvolvimento , Germinação , Insetos , Folhas de Planta , Scrophularia/crescimento & desenvolvimento
3.
Chemoecology ; 25: 33-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25598578

RESUMO

Herbivore insects use a variety of search cues during host finding and mate recognition, including visual, gustatory, and olfactory stimuli, leaving multiple traits for evolution to act upon. However, information about differences or similarities in search pattern amongst closely related insect herbivore species is still scarce. Here, we study the production of and the response to pheromone in Galerucella (Coleoptera: Chrysomelidae) to investigate the beetles' search behaviour. Males of G. pusilla and G. calmariensis, two closely related species, are known to produce the aggregation pheromone dimethylfuran-lactone when feeding on their host plant, whereas no pheromones have been identified in other Galerucella species. We show that dimethylfuran-lactone is produced also by males of G. tenella, a species phylogenetically close to G. pusilla and G. calmariensis, whereas the more distantly related species G. lineola and G. sagittariae were not found to produce the same compound. To investigate the beetles' behavioural response to dimethylfuran-lactone, the pheromone was synthesized using a partly novel method and tested in olfactometers, showing that G. pusilla, G. calmariensis, and G. tenella were all attracted to the pheromone, whereas G. lineola and G. sagittariae did not respond. This suggests that the production of and the response to pheromone could be linked to the phylogenetic relatedness between the species.

4.
Ecology ; 95(5): 1370-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25000768

RESUMO

Effects of neighboring plants on herbivore damage to a focal plant (associational effects) have been documented in many systems and can lead to either increased or decreased herbivore attack. Mechanistic models that explain the observed variety of herbivore responses to local plant community composition have, however, been lacking. We present a model of herbivore responses to patches that consist of two plant types, where herbivore densities on a focal plant are determined by a combination of patch-finding, within-patch redistribution, and patch-leaving. Our analyses show that the effect of plant neighborhood on herbivores depends both on how plant and herbivore traits combine to affect herbivore movement and on how experimental designs reveal the effects of plant density and plant relative frequency. Associational susceptibility should be the dominant pattern when herbivores have biased landing rates within patches. Other behavioral decision rules lead to mixed responses, but a common pattern is that in mixed patches, one plant type experiences associational resistance while the other plant experiences associational susceptibility. In some cases, the associational effect may shift sign along a gradient of plant frequency, suggesting that future empirical studies should include more than two plant frequencies to detect nonlinearities. Finally, we find that associational susceptibility should be commonly observed in experiments using replacement designs, whereas associational resistance will be the dominant pattern when using additive designs. Consequently, outcomes from one experimental design cannot be directly compared to studies with other designs. Our model can also be translated to other systems with foragers searching for multiple resource types.


Assuntos
Herbivoria/fisiologia , Plantas/classificação , Animais , Modelos Biológicos , Dinâmica Populacional
5.
Oecologia ; 173(4): 1333-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23881513

RESUMO

Habitat area is an important predictor of spatial variation in animal densities. However, the area often correlates with the quantity of resources within habitats, complicating our understanding of the factors shaping animal distributions. We addressed this problem by investigating densities of insect herbivores in habitat patches with a constant area but varying numbers of plants. Using a mathematical model, predictions of scale-dependent immigration and emigration rates for insects into patches with different densities of host plants were derived. Moreover, a field experiment was conducted where the scaling properties of odour-mediated attraction in relation to the number of odour sources were estimated, in order to derive a prediction of immigration rates of olfactory searchers. The theoretical model predicted that we should expect immigration rates of contact and visual searchers to be determined by patch area, with a steep scaling coefficient, µ = -1. The field experiment suggested that olfactory searchers should show a less steep scaling coefficient, with µ ≈ -0.5. A parameter estimation and analysis of published data revealed a correspondence between observations and predictions, and density-variation among groups could largely be explained by search behaviour. Aphids showed scaling coefficients corresponding to the prediction for contact/visual searchers, whereas moths, flies and beetles corresponded to the prediction for olfactory searchers. As density responses varied considerably among groups, and variation could be explained by a certain trait, we conclude that a general theory of insect responses to habitat heterogeneity should be based on shared traits, rather than a general prediction for all species.


Assuntos
Ecossistema , Insetos/fisiologia , Plantas , Animais , Comportamento Apetitivo , Sinais (Psicologia) , Herbivoria , Modelos Teóricos , Atividade Motora , Odorantes , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...